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PREFACE  
This study was commissioned by the European Chemical Industry Council (CEFIC) and conducted by ARCHE 

Consulting.  

On 14 October 2020 the EU Commission published its Chemical Strategy for Sustainability. This strategy calls 

to systematically integrate the issue of combined exposure (i.e. exposure to unintentional mixtures of different 

chemicals via our surroundings or the environment) into chemical risk assessments. This report focusses on 

reviewing of existing (monitoring) data and research with the aim of improving the scientific knowledge base 

of any future regulatory approach, with special focus on the methodology to determine a mixture assessment 

factor (MAF). 

CEFIC has defined the scope and aims of the project, but ARCHE Consulting has performed all data collection, 

literature review and data analyses. Discussions were planned and held between the sponsor and the 

consultants during the course of the project. However, the content, analyses, discussion and conclusions 

presented in this report are the sole responsibilities of the authors. Any opinions and conclusions in this report 

are those of the authors and do not necessarily reflect those of CEFIC. 

Project leaders were Karel Viaene and Frederik Verdonck at ARCHE Consulting and Steven Van de Broeck 

at CEFIC. For further information, please contact Steven Van de Broeck (sva@cefic.be) or Karel Viaene 

(karel.viaene@arche-consulting.be).  



   
 

 

EXECUTIVE SUMMARY 
 

A mixture assessment factor (MAF) to account for combination/mixture effects during the evaluation of risks 

for humans and the environment has been proposed by ECHA for integration in REACH. The current report 

does not discuss whether and how a MAF should be implemented, but focuses on, if a generic MAF would be 

implemented, how to best estimate such a generic MAF. MAF methodologies are developed based on a certain 

logic/reasoning and imply different assumptions. This impacts the outcome of MAF calculations and 

understanding these differences between MAF methodologies is key to a well-balanced MAF calculation.  Four 
different MAF calculation methods were evaluated in this report: (1) equal toxic share of the most 

contributing substances (cfr. Van Broekhuizen et al., 2016); (2) the maximum cumulative ratio (MCR; Price & 

Han, 2011); (3) the size of the hazard index (HI); and (4) equal toxic share of all contributing substances (KEMI, 

2021). The performance of these four MAF methods was evaluated with freshwater monitoring data. Five 
environmental monitoring databases were considered: one European-wide (Waterbase), three 

regional/national (Rhine, Adour-Garonne, Swedish Pesticides) and one local (Erft river) database.  

The outcome of these MAF methods was compared between databases and between methods. 

Additionally, the robustness against the following criteria was evaluated: (1) impact of the choice of reference 

value (i.e. PNEC or HC5); (2) impact of the sample size and the presence of unknown and non-detected 

substances; (3) the consideration of mixtures with single substance risk and (4) the choice of protection level 

and level of conservatism.  

Based on these criteria, the maximum cumulative ratio was found to be most robust: the choice of PNEC 

or HC5 had limited impact on the final MAF value, the MAF did not consistently increase for larger samples, 

calculated MAF values across databases were comparable (between 1 and 10) and differences between MAFs 

protective for 90% and 95% of the samples were limited (<1). The equal toxic share of the most contributing 

substance method was somewhat robust, but performed less well compared to the MCR for the sample size 

and level of protectiveness. The size of the hazard index was greatly affected by the choice of the reference 

value and sensitive to whether single substance risks were considered. The “equal toxic share of all 

contributing substances” method was also sensitive to the reference value used, the contribution of single 

substances and showed a linear increase of the MAF with increasing sample size. 

Which method takes preference is partly a policy decision, but analyses like these help inform the 
decision-making. Methods differ mainly in how they distribute the burden of mixture toxicity: to all substances 

proportionally (e.g. maximum cumulative ratio) or disproportionally to the most contributing substances (e.g. 

equal toxic share of most contributing substances). Additionally, all these methods are very conservative, 

starting from worst-case assumptions (e.g. concentration addition for mixture toxicity) that can be further 

refined with higher-tier methods. This study confirms that differences between MAF methods can be 

considerable and future MAF discussions should take these differences into account.   
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1. INTRODUCTION 

1.1. BACKGROUND  

ARCHE conducted in 2021 a study on ‘Characterising chemical co-exposures in EU to support a combined 

exposure assessment strategy’. The mixture pressure analysis showed that the vast majority of the observed 

mixture exposure are not at risk (81 – 94% of the observed monitored mixtures). For the remaining cases, it 

can be assessed which EU Regulation or Directive would be most effective to manage these mixtures of 

potential concern. The research done concludes that a potential mixture assessment factor (MAF) needs to 

be proportional to the magnitude of the mixture toxicity problem identified. The spatial use pattern analysis of 

observed mixtures in the surface waters indicated that the more downstream a river catchment, the more 

complex mixtures, the more likely higher number of chemicals (both in terms of number of chemicals as well 

as types of chemicals) will contribute to mixture toxicity and subsequently, a higher MAF, can be expected. 

However, since chemical oriented regulations are not always spatially explicit, a (high level) generic factor can 

be considered. 

Various studies have suggested generic MAF factors. The most recent study is conducted on behalf of the 

Swedish Chemical Agency (KEMI) and suggests that a MAF should be in the order of magnitude between 10 

and 50 (KEMI 2021). The current study provides an overview and comparison of the different possible methods 

to estimate MAF. In addition, the databases used in the two studies are tested to avoid potential discrepancies 

due to the databases used across both studies.  

 

1.2. OBJECTIVES 

Four objectives were defined for the current study. 

1. Compare different MAF methodologies and understand how the choice of the methodology impacts 

the size of the MAF. 

2. Assess how the database affects the size of the MAF i.e. how different are MAF values between 

different databases and what are the implications.  

3. Assess the impact of the used reference values to identify key mixtures contributors. 

4. Assess the impact of the number of chemicals on the MAF size.  
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2. METHODOLOGY 

2.1. MAF METHODOLOGY 

Four different methods to derive a potential Mixture Assessment Factor (MAF) based on risk calculations are 

discussed in the present study. All methods depart from the Concentration Addition-based Hazard 

Index/Hazard Quotient approach, but different outputs of this approach are used to derive the MAF in the 

various methodologies. Central to the four methods is the mixture risk estimation that is expressed as the 

Hazard Index (Eq. 1): 

 

!" = ∑!% = ∑ !!
"#!

    (Eq. 1) 

 

In Equation 1, HI is the Hazard Index (in the CEFIC-MIAT terminology) which represents the cumulative risk 

ratio (or risk quotient used as terminology by other authors). The Hazard Index is the sum of the Hazard 

Quotient of all measured substances in the mixture sample. The Hazard Quotient of a substance i is defined 

by the ratio between the measured concentration of substance i (ci) in the mixture sample and the Reference 

Value of substance i (RVi). The Reference Value can be any environmental threshold concentration, but for 

the purpose of this study, the chronic 5% hazardous concentration (HC5) has been selected as default for 

mixture pressure calculations (see Section 2.2). However, also an analysis of the influence of using the 

Predicted No-Effect Concentration (PNEC) vs. the chronic HC5 on the MAF derivation methodologies has 

been performed (see Section 2.3). 

 

2.1.1. EQUAL TOXIC SHARE OF MOST CONTRIBUTING SUBSTANCES 

In a first method, it is assumed that the carrying capacity in the environment is to be equally split across the 

most contributing substances. The size of the MAF can be directly linked to the number of substances 
contributing to the mixture cumulative risk. The larger the number of contributing substances, the larger 

the MAF factor.  

Assuming a mixture of n substances and a worst case of co-existence at equal toxic shares of 1/n of their 

individual PNEC, would lead to the derivation of a preliminary MAF of n. A similar rationale is presented in Van 

Broekhuizen et al. (2016). However, in the present study, a reasonable worst-case n is derived for each 

database as the number of substances that contribute to at least 90% of the mixture pressure (defined as the 

Hazard Index) for approximately 90% of the mixture samples. 

 

2.1.2. MAXIMUM CUMULATIVE RATIO 
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The second method relies on the Maximum Cumulative Ratio (MCR) to derive a MAF. The MCR has been 

defined in the CEFIC-MIAT methodology as the ratio of the Hazard Index to the Hazard Quotient (HQ) of 
the compound with the highest Hazard Quotient (Price and Han 2011; Price et al. 2012a; Eq. 2). 

 

    (Eq. 2) 

 

The smaller the MCR, the smaller the number of compounds that are significantly contributing to the overall 

mixture risk. Using the MCR, the “nature of concern” of a mixture and related risk management actions can be 

decided on. This way, the MCR could equally be considered as a surrogate for the MAF. The MCR does not 

assume equal toxic share of most contributing substances in a mixture (as in previous section) but it does 

proportionally distribute MAF burden across all substances.  

 

2.1.3. SIZE OF HAZARD INDEX 

The third method relates the MAF to the Hazard Index (HI; Eq. 1), which represents the cumulative (potential) 

risk of a mixture. The size of the HI can be considered as the factor required to turn a potential concern 
conclusions (HI >1) into no risk conclusion (HI <1).  

For the derivation of the MAF based on the Hazard Index, the following mixture groups are defined based on 

the HI and MCR (based on Price et al. 2012): 

• Group I are the combined exposures that are a potential concern because one or more individual 

chemicals are a concern (i.e. at least one of the HQi>1).  

• Group II are the combined exposures where there is a low concern for both individual chemicals and 

for their combined effects: (i.e. HI<1).  

• Group III are the combined exposures where there is a low concern for individual chemicals but there 

is a potential concern for the combined effects (HQi<1, HI>1). 

A high-end percentile has been considered as reasonable worst-case for derivation of a MAF. The percentile 

were calculated for all Groups, for Group III only and for Group III + Group I managed (in which HQ > 1 for 

individual substances were capped at 1). 

  

2.1.4. EQUAL TOXIC SHARE OF ALL CONTRIBUTING SUBSTANCES 

This algorithm to calculate the MAF is described in detail in the report of KEMI (2021), and is based on the 
concentration addition-based Hazard Index/Hazard Quotient approach. It should be noted that the 

&'( = !"
&)*	!%	
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terminology used in KEMI (2021) to describe toxic pressure is slightly different compared to those used in the 

previous sections, but these are equivalent. The risk quotient (RQ) used in KEMI (2021) is equivalent to the 

Hazard Quotient (HQ), while the sum of risk quotients (RQsum) is equivalent to the HI in Section 2.3. 

In short, the algorithm contains three major phases. In Phase I concentrations are taken at face value and the 

RQsum is calculated. If the RQsum <1 for a mixture sample, no MAF is needed and the algorithm stops. If 

RQsum>1, phase II of the algorithm starts. 

In Phase II single-substance exceedance of the reference value are considered by setting the RQ of 

substances for which the measured concentration exceeds their reference value to 1 (referred to as the 

managed RQ: RQman=1). Using these RQman, the RQSumMan is calculated for the entire sample. Although by 

capping the risk quotient of each individual mixture component at a value of 1.0 the resulting mixture conforms 

with existing regulations on the registration and authorization of individual chemicals, RQSumMan>1 and 

therefore potential risks due to mixture exposure are still predicted and the sample should be considered in 

Phase III. 

Phase III consists of the MAF calculation in an iterative manner. In a first step, a MAF of n (with n the number 

of mixture constituents) is applied. In practice, only those RQMAF values that exceed 1/MAF are affected by the 

MAF, and are set to the RQMAF value of the most contributing substance. Other RQ are kept at the original 

value from Phase II. The RQSumMAF is calculated. This lowers the RQSumMAF almost always to a value <1, 

leaving room for a less stringent MAF. After this first step, the MAF is iteratively lowered until RQSumMAF equals 

exactly 1.  

The application of the MAF algorithm on an example mixture is illustrated in Table 1 of the report of KEMI 

(2021).  Because the RQMAF of substance for which the RQMAF exceeds 1/MAF is set to the RQMAF value of the 

most contributing substance, the reduction factor for each of the substances in the mixture is different. While 

small contributors are not affected (i.e. if RQ< 1/MAF) in the algorithm, the most contributing substance is most 

affected with a reduction factor equal to the MAF. The substance, that has a RQ between the RQ of the highest 

contributing substance and 1/MAF, has a reduction factor that equals the original RQ of the substance/RQMAF 

of the most contributing substance. 
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2.2. CALCULATION OF 5% HAZARDOUS CONCENTRATIONS 

The basis of calculations of mixture pressure in the current study is the 5% hazard concentration (HC5), 

because these values are more robust compared to PNEC values where assessment/safety factors are 

included.  HC5 values were calculated based on log chronic NOEC/EC10 and the slope of the species sensitivity 

distribution (SSD) collated by Posthuma et al. (2019). The dataset of Posthuma et al. (2019) consists of 

parameters (median and standard deviation of log-transformed toxicity data) of log-normal SSDs for 12 386 

chemicals. Separate parameters are published for both the acute and chronic SSD. Toxicity data for the 

derivation of the SSDs was collated from different sources, such as the US EPA’s ECOTOX database, REACH 

data. For substances for which insufficient toxicity data could be extracted, Posthuma et al. (2019) used read-

across approaches to estimate the remaining SSD-parameters. SSDs parameters were derived when toxicity 

data for at least 3 species was retrieved. Remaining data gaps between acute and chronic SSDs were tackled 

with extrapolation factors (Posthuma et al. 2019). The necessary data were extracted from the Posthuma et 

al. (2019) database based on CAS-numbers. If an exact match was not found, the search was repeated based 

on the substance name. For a few substances, no match based on CAS-number of substance name could be 

found, for these substances an environmental threshold level was derived from the WFD-directive (i.e. annual 

average-environmental quality standard (AA-EQS), EC 2013/39/EU), from the PNEC reported by Gustavsson 

et al. (2017) or Markert et al. (2020) or PNECs, RACs and EQS values for newer pesticides, retrieved from the 

ETOX database of the German Environment Agency (http://webetox.uba.de/webETOX/index.do). 

 

The calculated chronic HC5 represent different data-qualities. Table 1 shows the different quality categories 

for the chronic SSDs selected from Posthuma et al. (2019). For the Rhine dataset (see section 3.4), 67% of 

the chronic SSDs were not extrapolated (i.e. they were derived based on chronic toxicity data). 29% of the 

chronic SSDs were extrapolated based on acute EC50 SSD and 4% based on the acute NOEC SSD.  For the 

Adour-Garonne dataset (see section 3.3), 51% of the chronic SSDs were not extrapolated (i.e. they were 

derived based on chronic toxicity data). 29% of the chronic SSDs were extrapolated based on acute EC50 SSD 

and 7% based on the acute NOEC SSD. For 10% of the substances, the chronic SSD was extrapolated from 

a poorly presented Acute SSD, implying that the acute SSD was derived from read across or that the acute 

SSD contained only 1 toxicity data point. For the remaining substances, there was no match found within the 

Posthuma database, for these data other sources were used to obtain an effect threshold. 
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Table 1 Data quality of SSD parameters extracted from the database of Posthuma et al. (2019) for the Adour 

Garonne and Rhine dataset. Numbers indicate number of substances belonging to each category 

SSD 
extrapolation 
category 

Number of species in SSD Rhine Adour-
Garonne 

Swedish 
pesticides 

Erft 

Chronic NOEC 
not 
extrapolated 

Officially enough species (>10) 
for ERA with SSDsa 34 31 38 27 

Enough species (6-10) for ERA 
with SSDs - 1 6 3 

Marginally enough species (3-5) 
for ERA with SSDs - 2 1 - 

Chronic NOEC 
extrapolated 
from Acute 
EC50b 

Officially enough species (>10) 
for ERA with SSDs 12 11 16 17 

Enough species (6-10) for ERA 
with SSDs 3 4 11 6 

Marginally enough species (3-5) 
for ERA with SSDs - 7 5 7 

Chronic NOEC 
extrapolated 
from Acute 
NOECc 

Officially enough species (>10) 
for ERA with SSDs 2 - 17 8 

Enough species (6-10) for ERA 
with SSDs - - 5 3 

Marginally enough species (3-5) 
for ERA with SSDs - 3 2 3 

Chronic NOEC 
extrapolated 
from poorly 
presented 
Acute SSDd 

Acute EC50 for 1 species - 1 -  

Read across - 7 5 15 

Other sources: WFD-EQS, Restriction dossier, 
member state EQS - 3 5 4 

Other: Target Lipid Model PNEC (PAH only)e  7   
Total number of substances considered in 
cumulative risk estimation 51 76 107 93 

Number of substances for which no threshold value 
could be derived 0 0 3 5 

a
 ‘Officially enough species’ refers to the minimal sample size put forward for the use of statistical 

derivation methods as described in the Technical Guidance Document on Risk Assessment (EC 2003). 

b
 An extrapolation factor of 10 was applied by Posthuma et al. (2019) to extrapolate from acute EC50 to 

chronic NOEC, i.e. the acute EC50s were divided by 10. 

C
 An extrapolation factor of 9 was applied by Posthuma et al. (2019) to extrapolate from acute NOEC to 

chronic NOEC, i.e. the acute NOECs were divided by 9. 

d An extrapolation factor of 10 was applied by Posthuma et al. (2017) on the median acute EC50 

calculated from read-across or the poorly represented acute SSD, and a slope of 0.7 was assumed 

(Posthuma et al. 2019). 

eFor PAH, chronic PNECs were extracted from the PETROTOX-tool, which calculates calculated PNECs 
based on the Target Lipid Model (Redman et al. 2017). 
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2.3. COMPARISON OF THE USE OF HC5 VS. PNEC AS REFERENCE VALUE 

For two databases (i.e. the Swedish Pesticides and the Erft river, see section 3), the influence of the selected 

reference value, HC5 vs. PNEC values on the calculation of the MAF techniques is evaluated. For this 

evaluation, PNECs were taken directly from the respective studies. For the Swedish Pesticides, environmental 

threshold values were taken from the study by Gustavsson et al. (2017). The PNECs published by Gustavsson 

et al (2017) represent Swedish Water Quality Objectives (WQO’s). WQO's reported by Gustavsson et al. 

(2017) were derived using a method that closely follows the REACH approach for deriving Predicted No Effect 

Concentrations (PNEC) values, based on single species data and assessment factors between 10 and 1000, 

depending on the underlying ecotoxicological endpoints. For the Erft river, ‘assessment values’ were taken 

from the study by Markert et al. (2020). The ‘assessment values’ published by Markert et al. (2017) represent 

regulatory established environmental quality standards (EQS), such as the those from the WFD or related 

national legislation on water quality. In the absence of EQS or if new ecotoxicological data have recently been 

published, Markert et al. (2020) derived assessment values from validated ecotoxicological data, i.e. PNEC, 

EQS proposals or threshold values for national monitoring programs. The PNEC values from the studies of 

Gustavsson et al (2017) and Markert et al. (2020) were amended by PNECs, RACs and EQS values for newer 

pesticides, retrieved from the ETOX database of the German Environment Agency 

(http://webetox.uba.de/webETOX/index.do). 

 

 
3. DESCRIPTON OF DATABASES AND DATA PROCESSING 

3.1. OVERVIEW OF DATABASES AND THEIR GENERAL TOXIC PRESSURE 

Five monitoring databases were covered in the current study: the European-wide Waterbase, the ICPR Rhine 

database, the EauFrance database for Adour-Garonne, the Swedish pesticides database and the monitoring 

campaign in the river Erft (Table 2). All databases are available either online or on request at the data-owners. 

All databases are discussed below and in ARCHE and VITO (2021) for further details.  

 

Table 2: Overview databases covered in this study.  

Database Number of samples Number of analytes 

Waterbase 12356 334 

Rhine 394 57 

Adour-Garonne 3557 77 

Swedish pesticides (Kemi 2021 study) 1513 109 

Swedish pesticides (current study) 1891 109 

River Erft 503 153  
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Figure 1 shows the general toxic pressure in the different datasets. The Adour-Garonne dataset represents 

generally a low toxic pressure, with 94% of the mixture samples predicted to show no (potential) risk (i.e. 

HI<1,). The Rhine and the Swedish dataset represent moderate toxic pressure with more than 10% of the 

samples predicted to be at risk mainly due to single substances (at least one substance HQ>1; Sweden) or 

mixture exposure (HI>1; Rhine). The Erft river shows a high toxic pressure, but mainly due to single 

substances, as in almost 50% of the samples at least one substance HQ>1. 

 
Figure 1: Toxic pressure of mixture samples in the different databases represented by the percentage of 

monitoring samples belonging to three different mixture groups. Group I are the combined exposures that are 

a potential concern because one or more individual chemicals are a concern (i.e. at least one of the HQi>1). 

Group II are the combined exposures where there is a low concern for both individual chemicals and for their 

combined effects: (i.e. HI<1). Group III are the combined exposures where there is a low concern for individual 

chemicals but there is a potential concern for the combined effects (HQi<1, HI>1). Toxic pressure was 

calculated using the HC5 as reference value. Calculations for the Waterbase dataset were obtained from 

Rodea- Palmorales et al. (submitted). 

 
 

3.2. WATERBASE 

Waterbase is the generic name given to the EEA's databases (European Environment Agency) on the status 

and quality of Europe's rivers, lakes, groundwater bodies and transitional, coastal and marine waters, on the 

quantity of Europe's water resources, and on the emissions to surface waters from point and diffuse sources 

of pollution. The dataset contains time series of nutrients, organic matter, hazardous substances and other 

chemicals in rivers, lakes, groundwater, transitional, coastal and marine waters. The data has been compiled 

and processed by EEA.  
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For this project, the database on chemical status and quality was used (Waterbase quality ICM). Specifically, 

we used the dataset T_WISE6_DisaggregatedData containing the disaggregated water quality data on the 

observed values (e.g. concentrations) of determinants in water, sediment and biota samples in inland, coastal 

and marine waters as reported by EEA Member Countries on an annual basis. 

This study used the Waterbase dataset as processed by Rodea-Palomares et al. submitted. Yearly mean and 

maximum values were calculated per site. The selected reference values for mixture pressure assessment by 

Rodea-Palmorales et al. (submitted) were the chronic HC5 derived based on the SSD-parameters published 

by Posthuma et al. (2019). The only exception were polyaromatic hydrocarbons for which the PNEC reported 

in the PETROTOX tool were used (Redman et al. 2017). Metals were not included in the analysis because 

these are naturally occurring substances where background concentration and bioavailability are critical to 

derive an accurate estimation of the risks. However, it was not possible to perform for these corrections due 

to a lack of data and resources, hence metals were excluded from the analysis.  

A database with HQ for each substance and per site was taken from the supplementary information from 

Rodea-Palmorales et al., submitted. 

 

3.3. ADOUR-GARONNE (EAUFRANCE) 

In France, there are 6 water agencies established since 1964 consisting of 6 big water basins Adour-Garonne, 

Loire-Bretagne, Seine-Normandie, Artois-Picardie, Rhin-Meuse and Rhône-Méditerranée. These water 

agencies carry out a mission for general interest, including managing, preserving water sources and aquatic 

environment. The analysis on water quality has been started by these agencies ever since. The data is annually 

updated in the database of eauFrance and can be downloaded at http://www.naiades.eaufrance.fr/. 

In scope of this study, a local dataset of Adour-Garonne of period 2015-2019 was used. This dataset can be 

downloaded separately at this link. The measurement was started in 1971 and has been regularly updated. 

For the current study, period 2015-2019 was selected. The data package includes physico-chemistry, 

phytosanitary and hydrobiology data. 

The physico-chemistry data includes more than 2000 sampling sites covering 7 sub basins in the region, with 

more than 409 variables. The focus is set on chemical substances which are consisting of 47% industrial 

substances, 12% agrochemical substances, 21% pharmaceutical substances, 5% PAHs and 15% of mixed-

use substances.  

 

3.4. RHINE (ICPR) 

The state of the Rhine is being monitored from Switzerland until the Netherlands by ICPR – International 

Commission for the Protection of the Rhine. The first monitoring was carried out as early as the 1950ies, so 

that, for certain substances in the Rhine, corresponding time series are available. Over time, more and more 



   
 

 12 

substances were included in monitoring activities, the measurement of suspended matter was expanded and 

the sampling frequency was increased. Monitoring results are supplemented every year, thus continuing time 

series. The data can be downloaded at https://www.iksr.org/en/topics/water-quality/water-quality-data. 

The monitored parameters include both organic micropollutants, inorganic compounds and general water 

quality parameters. The monitored chemicals are mainly priority substances under the EU Water Framework 

Directive. The sampling intensity has increased over time. The monitoring locations are mainly located at the 

river Rhine and some major tributaries. The number of monitoring locations is rather small. Only about 6 

monitoring locations have been intensively monitored.  

The version of the database used in the ARCHE and VITO 2021 study was used here (ARCHE and VITO 

2021). The data was downloaded on February 11, 2021. The data have been processed to maximize both the 

number of chemicals per sample and the total number of samples. The final dataset contains 394 samples 

where all 57 analytes have been measured but not necessarily detected. Reference values for calculation of 

toxic pressure are the chronic HC5 as discussed Section 2.5, except for Polyaromatic Hydrocarbons (PAH) for 

which the chronic PNEC calculated from the Target Lipid Model was used (Redman et al. 2017, see ARCHE 

& VITO 2021). It has been argued that some of the risk evaluation methods, such as the HI/HQ approach, are 

not suitable for naturally occurring substances, because they might predict risks below natural background 

concentrations (Van Regenmortel et al. 2017, Nys et al. 2018). Therefore, to account for background 

concentrations, the added concentration approach has been used for naturally occurring substances. The 

added (risk) approach assumes that species are fully adapted to the natural background concentration and 

therefore contributes to the toxicity. This approach accounts for background concentrations of naturally 

occurring substances by subtracting the natural background from the measured environmental concentration. 

Natural background concentrations of metals in European waters were considered to be the lower 10th 

percentiles of metal concentration in the geochemical baseline FOREGS database (Table 3). 

Table 3 Overview of background concentrationsa of metals in European surface waters. 

Metal Background 
concentration 

(µg/L) 
Cd 0.01 
Cr 0.38 
Pb 0.09 
Cu 0.88 
Zn 2.68 
Ni 1.91 

a Background concentrations are represented here as the lower 10th percentile of metal concentrations in the 
FOREGS database 
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3.6. SWEDISH PESTICIDES 

Sweden is regularly monitoring pesticide concentrations in four agriculturally dominated catchments and two 

rivers since 2002. These data are available for download from http://jordbruksvatten.slu.se/. An extended 

analysis of het mixture risk of these pesticides has been performed by Kemi in 2021 (KEMI 2021). A similar 

approach to collect and process the data was followed in the current study. The data was downloaded on 

October 12, 2021. All datapoints prior to (but excluding) 2019 were selected to attain a comparable dataset to 

the 2021 Kemi study. The dataset contained 1891 samples for 109 pesticides. All values below the analytical 

level of quantification were set to zero prior to the analysis.  

 

3.7. ERFT RIVER 

The Erft river is located in the South-west of Nordrhein-Westfalen, Germany (Markert et al. 2020). The river is 

104 km long and has a catchment of 1918 km2. The middle and lower reaches of its course are strongly 

influenced by intense agriculture, urban and industrial areas. The Erft catchment is marked by a high population 

density of 665 inhabitants/km2. Additionally, active and former lignite mines are present in the catchment area. 

This translates to exposure to a wide variety of chemicals. Samples were taken at 39 sampling sites along the 

Erft river and seven tributaries over 13 sampling campaigns (March 2016 -  March 2017). 

The data for the Erft River was discussed in the Kemi 2021 report and has been previously used in the study 

by Markert et al. (2020). Over 150 chemicals were monitored in the German river Erft between 2016 and 2017, 

including pesticides, industrial chemicals, personal care products, pharmaceuticals and their degradation 

products (Markert et al. 2020). The final dataset consists of 503 samples and 98 detected chemicals. All 

monitoring data and environmental threshold values were kindly provided by Dr. Markert (German North Rhine 

Westphalian State Agency for Nature, Environment and Consumer Protection; LANUV) and the Erftverband. 

Concentrations detected at levels below the analytical level of quantification were set to zero. Otherwise, the 

reported data have been taken at face value, without further assessment or modification.  
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Figure 2: The Erft river catchment area and monitoring stations. (Source: Markert et al. 2020) 
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4. COMPARISON OF MAF SIZE FOR EACH MAF METHOD 

4.1. EQUAL TOXIC SHARE OF MOST CONTRIBUTING SUBSTANCES 

The different analysed data sets and the scientific literature provide an indication on the number of substances 

contributing to mixture toxicity. The contribution of the risk drivers in the Adour-Garonne, Rhine, Swedish 

Pesticides and Erft river database was calculated and is visualized in Figure 3 and Figure 4. For the Adour-

Garonne dataset, one substance explains 95% of the hazard index for 50% of the mixture samples and the 

first three risk drivers explain 90% of the hazard index for 94% of the mixture samples. For the Rhine dataset 

(being a data set of hot spots), two substances explain 92% of the hazard index for half of the mixture samples 

and the first six risk drivers explain 90% of the hazard index for ca. 92% of the mixtures. For the Swedish 

Pesticides dataset, three substances explain 95% of the hazard index for half of the mixture samples and the 

first five risk drivers explain 90% of the hazard index for ca. 92% of the mixtures. For the Erft dataset, three 

substances explain 95% of the hazard index for half of the mixture samples and the first four risk drivers explain 

90% of the hazard index for ca. 94% of the mixtures. 
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Figure 3: Cumulative percentage of mixture pressure explained by the different mixture components for all 

exposures for the Adour-Garonne dataset (upper left panel), Rhine dataset (upper right panel), the Swedish 

Pesticides dataset (lower left panel) and the Erft dataset (lower right panel). Mixture pressure is expressed as 

Hazard Index (based on HC5). 
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Figure 4: Cumulative probability in function of chemicals contributing for different percentages to the total 

mixture pressure for the Adour-Garonne dataset (upper left panel), Rhine dataset (upper right panel), the 

Swedish Pesticides dataset (lower left panel) and the Erft dataset (lower right panel). Mixture pressure is 

expressed as Hazard Index (based on HC5). 

 

Rodea-Palomares et al. (submitted) calculated the contribution of first three risk drivers to overall Hazard Index 

(HI, i.e. cumulative risk) for the EU Waterbase (see Figure 5). Overall, one substance explains 75% of the 

hazard index for 50% of the mixture samples and the first three risk drivers explain 90% of the hazard index 

for 65% of the mixture samples. Nine substances are needed to explain 90% of the hazard index in 90% of 

the mixtures . This number is higher compared to other data sets. Note that Waterbase also contains a larger 

number of substances. 
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Figure 5: Cumulative probability in function of chemicals contributing for different percentages to the total 

mixture pressure (based on data from Rodea-Palomares et al., 2021). 

 

Several other studies in the scientific literature show that usually risks from chemical mixtures are driven by a 

limited number of mixture components: 

• Verro et al. (2009) found that in the river Meolo in Italy one or a few compounds were usually 

responsible for more than 80% of the CA estimated mixture toxicity.  

• Backhaus and Karlsson (2014) investigated environmental risks from pharmaceuticals detected in 

waste water treatment plant effluents across Europe and identified that at maximum 10 compounds 

usually explained more than 95% of the overall risk.  Note that two compounds failed single substance 

risk assessment in the seven samples assessed. 

• Posthuma et al. (2016) found for Dutch rivers that 5–10 compounds are usually responsible for nearly 

the whole toxic pressure. The compounds driving the risk from the chemical mixtures might differ 

depending on the specific site/mixture composition, but the number of compounds responsible for the 

biggest fraction of the mixture effect seems to be always in the same range. Based on this, Van 

Broekhuizen et al. (2016) suggested about 5-10 chemicals dominate in cumulative risk to account for 

>95% of the combined effect, i.e. a coverage of >95% while recognizing the need for a broader EU 

study. 

• Vallotton and her co-workers analyzed the joint toxicity of pesticide mixtures detected in the water 

quality monitoring of the National Water-Quality Assessment (NAWQA) program of the U.S. Geological 

Survey (Vallotton et al., 2016). They concluded that the environmental risk for more than 90% of the 

samples analyzed is driven by just one compound. 

• Gustavsson et al. (2017) reported that pesticide mixture risks are often driven by only 1-3 compounds. 

However, the risk-drivers (i.e., individual pesticides explaining the largest share of potential effects) 

differ substantially between sites and samples. Gustavsson et al. (2017) also indicated that the risk 

drivers are quite specific for each sample and site: site E21, for example, has a median MCR for the 
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RQWQO of 2.9, indicating that only between 2 and 3 compounds dominate the estimated mixture risk. 

But in order to capture at least 95% of the overall risk of all 248 samples taken over the years, there 

are still 44 compounds that need to be monitored and the situation at the other monitored sites is very 

similar. This is due to the fact that the dominating compounds constantly fluctuate between samples. 

 

The size of the MAF can be directly linked to the number of substances contributing to the mixture cumulative 

risk. The larger the number of contributing substances, the larger the MAF factor. Assuming a mixture of n 

substances and a worst case of co- existence at equal toxic shares of 1/n of their individual PNEC, would lead 

to the derivation of a preliminary MAF of n. A similar rationale is presented in Van Broekhuizen et al. (2016). 

Based on the findings in literature and our own dataset analysis, one can conclude that, assuming that the 

number of equal toxic share of most contributing substances in a mixture is a proxy for a MAF, for broad 

coverage databases and the majority (ca. 90%) of mixtures, 3-8 substances are contributing to ca. 90% of the 

hazard index or cumulative risk, suggesting an MAF between 3 and 8. 

 

4.2. MAXIMUM CUMULATIVE RATIO 

Table 4 provides the 90th and 95th percentiles and the maximum MCR values for selected representative data 

sets. The 90th percentile is between 1.7 and 4.2 whereas the maximum varies between 3 and 11. 

Table 4: MCR or Maximum Cumulative Ratioa for representative data sets based on lower tier assessment 

(based on more realistic scenario in which non-detects are excluded). 

  90th percentile 
MCR 

95th percentile 
MCR 

Maximum MCR 

Current study Adour-Garonne  1.7 2.0 3.1 
Rhine  3.3 3.7 4.4 
Swedish Pesticides 2.5 2.9 5.2 
Erft 2.3 2.7 4.3 

Rodea-
Palomares et al. 
(in preparation) 

EU Waterbase  4.2 5.1 11 

a MCR represents the Hazard Index divided by the highest Hazard Quotient 

 

Gustavsson et al. (2014) reported median MCR of 2.65 over alle sites using the PNEC as reference value 

(median MCR ranging between 2.0 and 3.2 over the different sites). A review of case studies (Bopp et al. 2016) 

showed that the MCR was usually ranging between 1 and 7, depending on the number of analysed compounds 

(Price and Han 2011; Backhaus and Karlsson 2014; De Brouwere et al. 2014; Price et al. 2012, 2014, Valloton 

& Price 2016, Gustavsson et al. 2017), that is, the number of chemicals that drive the mixture risk is usually 

low. In all the examples, the MCR decreased with increasing HI, indicating that the higher the predicted risk, 

the lower the number of substantially contributing chemicals. However, the overall assessment relies on the 

knowledge of the identity of the compounds and their contribution to the overall toxicity.  
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The lower the MCR, the lower the number of compounds that are significantly contributing to the overall risk. 

Using the MCR, the “nature of concern” of a mixture and related risk management actions can be decided on. 

This way, the MCR could equally be considered as a surrogate for the MAF. The MCR does not assume equal 

toxic share of most contributing substances in a mixture (as in previous section). 

Based on the findings in literature and own dataset analysis, one can conclude that, assuming unequal toxic 

share of most contributing substances in a mixture, a reasonable worst-case MAF factor of 2-3 (90th percentile) 

would protect the majority of the observed mixtures. This conclusion is made irrespective of whether the 

observed mixture is at risk or not. 

 

4.3. SIZE OF THE HAZARD INDEX 

The 90th and 95th percentile of the Hazard Index was calculated for the EU Waterbase (based on supplemental 

data from Rhodea-Palomares, in preparation), Rhine, Adour-Garonne (France), the Swedish and the Erft 

dataset using the chronic HC5 as reference value (see Table 5). 

Table 5: High end percentiles of HI (Hazard Index) for observed mixtures (based on a more realistic scenario 

in which non-detects are excluded). See 2.1.3 for definition of the different mixture group categories. 

  For all 
mixtures 

(all 
Groups) 

For all 
mixtures 

at risk 
(i.e. 

Group I 
and III) 

For 
Group III 
mixtures 

For Group 
III mixtures 

+ ‘risk 
managed’ 
Group I 

mixtures 
 

 
95% 

Current study Rhine 1.7 2.9 2.0 2.5 
Adour-Garonne (France) 1.9 6.6 1.7 2.3 
Swedish Pesticides 2.2 14.9 2.1 2.6 
Erft river 13.7 19.9 2.3 4.3 

Rodea-Palomares 
et al. (in 
preparation) 

EU Waterbase   1.3 16.4 2.4 3.3 

KEMI report, 
2021a 

Sweden  16.3 NA* NA* NA* 
Erft river 42.7 NA* NA* NA* 

  90% 
Current study Rhine 1.3 2.4 1.7 2.1 
 Adour-Garonne (France) 0.9 4.5 1.6 1.9 
 Swedish Pesticides 1.4 7.9 1.8 2.2 
 Erft river 9.0 12.2 2.0 3.6 
Rodea-Palomares 
et al. (in 
preparation) 

EU Waterbase   0.7 8.0 2.0 2.6 

* NA: Not available: could not be calculated 
a Note that in the report of KEMI (2021) PNECs were used as reference values, while the current study 
considered HC5 values. 
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It has been argued that a HI>1 together with a MCR close to 1 indicates that a given exposure situation is not 

relevant from a mixture perspective, but is instead a single substance issue (Price & Han, 2011). Or more 

general, individual chemicals exceeding safe levels do not need to be addressed specifically in the context of 

mixtures, as those should be tackled appropriately by the usual single substance legislative measures as 

postulated by Bopp et al. (2019). The same methodology can be applied on Group III mixtures only since these 

are the main target mixtures for introducing a MAF in the first place. This analysis was conducted for the EU 

(Waterbase), Rhine, Adour-Garonne (France), the Swedish and the Erft dataset (see Table 5 column for group 

III mixtures). MAF (i.e. HI) between 2 and 3 could be derived depending on the data set and the percentage of 

mixtures covered. 

Gustavsson et al. (2017) argues such an argumentation (excluding Group I mixtures) falls too short without 

taking a closer look at the consequences of single-substance oriented risk managements for the overall toxicity. 

In order to analyse this issue in more detail, they assumed that single-substance oriented risk mitigation (RM) 

measures were successfully implemented, leading to a situation in which no individual HQ exceeds a value of 

0.95. That is, each component is, after the implementation of risk mitigation measures, assumed to be present 

at a concentration of a maximum of 95% of its ecotoxicity reference value. Under these circumstances, the 

analysed aquatic ecosystem would be assessed as having a good chemical status according to the WFD. 

They then calculated the resulting mixture risk quotients for this situation. The assumed risk mitigations lower 

risks, but only from a median risk quotient of 2.1 to a median risk quotient of 1.8. Overall, 70% of the sites still 

have an unacceptably high risk It can be clearly seen that single-substance oriented risk mitigation substantially 

lowers the overall risks and such measures are thus a critical first step towards a non-toxic environment. But 

it is also obvious that single substance risk mitigation is unable to ensure that mixture risk is below the critical 

value of 1. As a consequence of the assumed successful implementation of single-substance oriented risk 

management measures, the average MCR values of the mixtures increase. This increased evenness is a 

consequence of introducing a ceiling for the maximum individual HQ at a value 0.95, simply attributing the 

same risk to all compounds which individually exceeded the ecotox reference value before the assumed risk 

mitigation.  

A number of concerns can be put forward with this rationale:  

• Risk management achieving a reduction proportionate to the HQ of the substance is very theoretical. 

A management practice especially for wide dispersive uses would not modify exposure in one co-

exposure sample but positively impact the co-exposure patterns. For a down-the-drain product (e.g. 

pharmaceuticals), a relevant RMM is a change in WWTP efficiency (upgrade) with a broader impact 

including the reducing levels of other micropollutants. For example, the introduction of WWTP 

treatment steps seem to yield a general abatement of the micropollutant load with the % abatement 

varying by chemistry.  

• Also, a more logical next step for group I mixtures is to further refine the mixture analysis e.g. by 

considering toxic mode of action or other refinements options that are typically available in risk 

assessment context, such as applying the concentration addition model at the trophic level. 
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The analysis considering the risk management of individual substance exceedances was, nevertheless, 

conducted for the Waterbase, Rhine, Adour-Garonne (France), the Swedish and the Erft dataset (see Table 5 

last column). It should be noted that these mixtures are somewhat artificial as not every unacceptable risk 

would be reduced to hazard index of 0.95 but rather lower. HI or MAF between 2 and 4 could be derived 

depending on the data set and the percentage of mixtures covered.  

 

4.4. EQUAL TOXIC SHARE OF ALL CONTRIBUTING SUBSTANCES 

The equal toxic share of all contributing substances method (i.e. the KEMI 2021 algorithm), applied to the 

datasets of the current study, resulted in MAF values in line with those originally reported in KEMI 2021 (Table 

6 and Figure 6). The median MAF value of 6.36 (Rhine dataset) were in line with the reported MAF of 5.16 for 

the river Erft (KEMI 2021). The Rhine dataset is considered to be the worst-case dataset, closely followed by 

the Erft dataset, as was the case for other MAF methods as well. The Swedish pesticides database has an 

intermediate median MAF value (4.11). The Waterbase and the Adour-Garonne dataset had lower MAF values 

of 1.47 and 1, respectively.  

Looking at the MAF95 i.e. the 95th percentile for each dataset, gives an indication which MAF would be 

protective for 95% of the samples. These values are clearly higher and the Erft (19), Swedish Pesticides (10.8), 

Rhine (10) and Waterbase (9.16) datasets all have high MAF95 values compared to the Adour-Garonne 

dataset (3.19).  

 

Finally, the KEMI 2021 algorithm was also applied to the Swedish pesticides monitoring dataset from KEMI 

2021 to demonstrate the validity of the implementation of the algorithm. After data selection following the 

instructions outlined in the KEMI 2021 study (e.g. only data until 2018), the final dataset was slightly larger 

(1891 vs. 1513 pesticides). However, the analysis showed good concordance with the original results (median 

MAF of 3.6 and 4.11 for the KEMI 2021 and ARCHE dataset, respectively), indicating the valid implementation 

of the algorithm (Table 6).  
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Figure 6: MAF values determined with the equal toxic share of all contributing substances method (cfr KEMI 

2021)  for different databases. Bars show the median MAF; error bars indicate the 5th and 95th percentile. 
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Table 6: Results from the mixture assessment factor (MAF) analysis with the KEMI algorithm (2021) for all considered databases. Median values [5th 

– 95th percentile] are provided. RQSum = sum of risk quotients in the original mixture; Max MAF = maximum MAF for all samples in the database; 

Number of affected mix components = number of chemicals where the MAF would need to be applied.  

Case Study Number of 
mixture 

components 

RQSum MAF Max 
MAF 

MAF for 90% 
samples 

Number 
affected mix 
components 

Number of 
monitored 
chemicals 

Number 
of 

samples 
Erft river* 25  

[4-38]  
7.96  

[0.05-42.7]  
5.16  

[1.17-18.97]  27.5 / 
3  

[1-16]  / 503 
Swedish 
pesticides 
(KEMI)* 

9  
[2-24] 

0.88  
[0.004-16.3] 

3.6  
[1.03-12.4] 31.7 / 

3  
[1-10] / 1513 

Swedish 
pesticides  
(ARCHE)  

10  
[2-26] 

1.08 [0.01-
17.01] 

4.11  
[1-13.8] 32 10.8 

3 
[0-11] 109 1891 

Rhine (ICPR) 17  
[12-22] 

3.49  
[0.5-7.69] 

6.36  
[3.24-10.3] 15.8 9.4 

4  
[2-8] 57 394 

Adour-
Garonne 
(EauFrance) 

2  
[0-7] 

0.01  
[0-1.36] 

1  
[1-3.19] 5.67 2.45 

0  
[0-3] 77 3557 

Waterbase  4  
[0-35] 

0.11  
[0-7.07] 

1.47  
[1-9.16] 31.9 6.4 

1  
[0-5] 

39  
[6-121] 12088 

* As reported in Table 2 in KEMI 2021. 
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5. COMPARISON OF THE ROBUSTNESS OF DIFFERENT MAF METHODS  

Previous section compared the MAF size for different MAF methods resulting from different databases. Some 
methods produce similar MAF values while other methods produce quite different MAF values. In order to 

understand which method is producing realistic values, each MAF method is tested against the main 

uncertainties of the whole assessment or related to using monitoring data:  

• Choice of reference values and built-in conservatism (HC5 versus PNEC) 

• Substance sample size including the unknown and non-detected substances potentially contributing 
to potential mixture risk 

• Dealing with mixtures with single substance risks 

A robust MAF estimation method should be less sensitive towards these uncertainties. 

 

5.1. IMPACT OF CHOICE OF REFERENCE VALUES 

5.1.1. REFERENCE VALUES: HC5 VS PNEC 

A comparison of environmental reference values to calculate mixture pressure i.e. chronic HC5 used in Section 

4 of this study and PNEC values typically used in other studies (e.g. Gustavsson et al. 2017, Markert et al. 

2020, Backhaus 2021) is given in Figure 7 for the Swedish pesticides and the Erft river datasets. With some 
exceptions, the PNEC is clearly more conservative compared to the HC5. The median difference between the 

HC5 and the PNEC is 10.7-fold (Swedish pesticides dataset) and 16.6-fold (Erft river dataset). This difference 

reflects most likely the incorporation of the assessment factor in the derivation of the PNEC (median 

assessment factor used in the derivation of the PNEC values of the Markert et al. (2020) is 50). HC5 values 

are preferred above the PNEC in the present study for the estimation of mixture pressure as these are 

considered to be more relevant to assess risks for actual communities, since HC5s are less influenced by an 

arbitrary assessment factor (although it should be noted that for some of the SSDs extrapolation factors have 

been used by Posthuma et al. (2019) to calculate chronic SSD-parameters from acute ecotox data). 

Given the large difference between PNEC and HC5 values, the potential influence of the choice of reference 

value on the derivation of the MAF is further explored in the next sections using the Swedish Pesticides and 

Erft river datasets as case studies. 

nathalie.briels

nathalie.briels

nathalie.briels
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Figure 7 Predicted No-Effect Concentrations (PNEC) as a function of 5% hazardous concentration (HC5) for 

the Swedish Pesticides (blue open squares) and the Erft river dataset (black circles). Full line represent a 

PNEC that is equal to the HC5, dashed line represent a 10-fold difference between PNEC and HC5. PNEC 

were taken from the original studies (Gustavsson et al. 2017, Markert et al. 2020) and HC5 values were derived 

from the parameters of the chronic SSD reported by Posthuma et al. (2019), see sections 2.5 & 2.6 for more 

information. 

Figure 8 gives an overview of the shift in general toxic pressure in the Swedish database and Erft river dataset 

when the analysis is based on HC5 vs. PNEC as reference value. Overall, relatively high toxic pressures 

(expressed as Hazard Index) are observed in both datasets when the PNEC is used as reference value, which 

can be observed from the percentage of samples that are predicted to be at risk due one or more chemicals 

to be of concern. The percentage of samples belonging to group II (no risk identified) is notably higher when 

using the HC5 compared to the PNEC value. 
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Figure 8 Toxic pressure of mixture samples in the different databases represented by the percentage of 

monitoring samples belonging to three different mixture groups. Group I are the combined exposures that are 

a potential concern because one or more individual chemicals are a concern (i.e. at least one of the HQi>1). 

Group II are the combined exposures where there is a low concern for both individual chemicals and for their 

combined effects: (i.e. HI<1). Group III are the combined exposures where there is a low concern for individual 

chemicals but there is a potential concern for the combined effects (HQi<1, HI>1). Toxic pressure was 

calculated either using the HC5 or the PNEC as reference value. 

 

5.1.2. IMPACT OF REFERENCE VALUE ON MAF DERIVATION APPROACHES 

5.1.2.1. EQUAL TOXIC SHARE OF MOST CONTRIBUTING SUBSTANCES 

The contribution of the risk drivers to the Hazard Index calculated with the PNEC as reference value in the 

Swedish Pesticides and Erft river was calculated and is visualized in Figure 9. The same figures but using the 

HC5 as reference value are presented in the lower panels of Figure 4. The number of substances contributing 

to toxicity is relatively unaffected by the choice of reference value. Generally, 3 substances are needed to 
explain 95% of the hazard index for 50% of the samples, while 4 (Erft river) to 5 substances (Swedish 

Pesticides) are needed to explain 90% of the hazard index for ca. 90% of the samples. This finding is 

irrespective of the use of HC5 of PNEC as basis for the Hazard Index calculation.  
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Figure 9: Cumulative probability in function of chemicals contributing for different percentages to the total 

mixture pressure for the Swedish Pesticides dataset (left panel) and the Erft dataset ( right panel). Mixture 

pressure is expressed as Hazard Index (using PNEC values as reference values (for comparison same figures 

using HC5 as reference value are given in Figure 4). 

 

Table 7 Number of substances needed to explain a certain percentage of the hazard index for x% of the 

samples using the HC5 or PNEC as reference value 

 Number of substances needed to 
explain 95% of the hazard index for 
50% of the samples 

Number of substances needed to 
explain 90% of the hazard index for 
ca. 90% of the samples 

 HC5 PNEC HC5 PNEC 

Swedish Pesticides 3 3 5 5 

Erft river 3 3 4 4 

 
 
5.1.2.2. MAXIMUM CUMULATIVE RATIO 

The Maximum Cumulative Ratio is a measure of the degree of codominance of substances in the mixture, as 

it is the estimated as the Hazard Index divided by the Hazard Quotient of the highest Hazard Quotient. Values 

close to 1 indicate dominance of 1 substance in the mixture, while a MCR equal to n indicates that the receptor 
is exposed to equitoxic doses of all chemicals. The Maximum Cumulative Ratio for the Swedish Pesticides 

and the Erft river database based on both the HC5 and PNEC as reference value are compared in Table 8. 

Overall, the MCR is only slightly affected by the choice of the reference value. The reasonable worst-case 90th 

percentile MCR ranges between 2 and 3 for both datasets, irrespectively of the chosen reference value. The 

maximum MCR ranges between 4 and 5 for the HC5 and between 3 and 5 for the PNEC. Similar results can 

be expected for the other databases. 
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Table 8 MCR or Maximum Cumulative Ratio for representative data sets based on lower tier assessment 

(based on more realistic scenario in which non-detects are excluded). 

 90th percentile MCR Maximum MCR 
 HC5 PNEC HC5 PNEC 
Swedish 
Pesticides 

2.5 2.7 5.2 5.0 

Erft river 2.3 2.0 4.3 3.3 
 

 
5.1.2.3. SIZE OF THE HAZARD INDEX 

The choice of reference value has an important effect on the size of the Hazard Index as represented by the 
high-end percentiles of HI given in Table 9. When single substance exceedances are taken into account (first 

and second results columns), the 95% percentile HI calculated using the PNEC as reference value is at least 

2-fold higher (but up to 8-fold higher) compared to HI calculated using the HC5 as reference value. On the 

other hand, the 95% percentile HI of those group of mixtures where HI>1, but no single substance exceedance 

is observed (i.e. Group III, third results column) is only minorly affected by the choice of reference value. For 

the Group III + ‘risk managed’ Group I mixtures, 95% percentile HI are 1.6-fold (Erft river) to 2.3-fold (Swedish 

Pesticides) higher when the PNEC is used as reference value compared to the HC5 as reference value. 

Overall, it can be noted that the inclusion of the arbitrary assessment factor inflates the mixture risk predictions 
when using the hazard index as determinant. 

 

Table 9: Comparison of the influence of the choice of HC5 vs. PNEC for the estimation of cumulative risk of 

observed mixtures expressed as high-end percentiles of HI (Hazard Index). See 2.1.3 for definition of the 

different mixture group categories. 

  For all 
mixtures 

(all 
Groups) 

For all 
mixtures 

at risk 
(i.e. 

Group I 
and III) 

For 
Group III 
mixtures 

For Group 
III mixtures 

+ ‘risk 
managed’ 
Group I 

mixtures 
 

 
95% 

Current study - 
HC5 

Swedish Pesticides 2.2 14.9 2.1 2.6 
Erft river 13.7 19.9 2.3 4.3 

Current study- 
PNEC 

Swedish Pesticides 17.0 30.1 2.7 5.9 
Erft river 43.0 46.4 1.5 6.7 

Backhaus (2021)  
PNEC 

Sweden  16.3 NA* NA* NA* 
Erft river 42.7 NA* NA* NA* 
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5.1.2.4. EQUAL TOXIC SHARE OF ALL CONTRIBUTING SUBSTANCES 

The choice of the PNEC or HC5 clearly impacted the calculated MAF value (Table 10). The impact is already 

apparent when summing the risk quotients (median RQSum of 1.08 and 0.18 for PNEC and HC5, respectively). 

This was reflected in the calculated MAF values as well: MAF values were lower when using the HC5 compared 

to the PNEC, both for the median (4.11 and 1.54 with the PNEC and HC5, respectively) and the 95h percentile 

(13.8 and 6.64 with the PNEC and HC5, respectively).   

 

Table 10: MAF calculations using the KEMI 2021 algorithm for the Swedish Pesticides dataset using either the 

PNEC or HC5 for RQ calculations.  

RQSum = sum of risk quotients in the original mixture; RQSumMan = Sum of risk quotients after setting RQ > 

1 to 1; Max MAF = maximum MAF for all samples in the database; MAF 10 coverage = percentage of the 

samples with RQSum < 1 if MAF = 10; Number of affected mix components = number of chemicals where the 

MAF would need to be applied. 

Case 
Study 

Number of 
mixture 

components 

RQSum RQSumMan MAF Max 
MAF 

MAF10 
coverage 

MAF for 
95% 

samples 

Number 
affected 

mix 
components 

Swedish 
Pesticides  
(PNEC ) 

10  
[2-26] 

1.08  
[0.01-17.01] 

1.01  
[0.01-4.94] 

4.11  
[1-13.8] 32 <95% 13.8 

3 
[0-11] 

Swedish 
Pesticides 
(HC5) 

10  
[2-26] 

0.18  
[0-2.24] 

0.18  
[0-1.35] 

1.54 
[1-6.64] 18 >95% 6.64 

1 
[0-4] 

 

 

5.2. IMPACT OF SUBSTANCE SAMPLE SIZE INCLUDING NON-DETECTED AND UNKNOWN 
SUBSTANCES ON MAF 

A critical question in the debate on potential risk of unintentional mixtures is how to account for the contribution 

of unmeasured or unknown substances, as well as undetected substances. This can be assessed by 

understanding the impact of the substance sample size and how the number of substances contribute to the 

overall mixture risk. It has been shown that most of the toxicity of even large mixtures is determined by a small 
number of substances (Pareto principle). This was further investigated for the datasets selected in this study 

and for the different MAF methods. 
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5.2.1.2. EQUAL TOXIC SHARE OF MOST CONTRIBUTING SUBSTANCES 

The MAF as calculated with the ‘equal toxic share of most contributing substances’ initially increases for larger 

samples and levels off starting from intermediate sample sizes. This is especially apparent for the Waterbase 

(Figure 13) but less clear for the Swedish Pesticides (Figure 12). Therefore, it is expected that the MAF 

calculated with this method is probably robust against unmeasured and/or undetected chemicals. 

 
5.2.1.3. MAXIMUM CUMULATIVE RATIO 

The MCR follows the same pattern as the HI: MCR increases as sample sizes increase but levels off at 

intermediate sample sizes (see Figure 12 and Figure 13). Reaching a plateau is more pronounced. 

Consequently, the MAF defined as MCR of a large database is sufficiently robust against the potential impact 

of unmeasured or undetected chemicals because the MCR focuses on the general observed pattern of 

substance toxicity contributions in mixtures.  
Price & Han (2011) equally demonstrated the MCR is relatively robust against number of detects (and setting 

non-detects equal to zero) and against number of analytes (and setting non-detects equal to DL/20,5) (see 

Figure 10). 
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Figure 10: Figures from Price & Han (2011): The relationship between MCR and n for top: scenario 1 (DL = 0) 

and bottom: scenario 2 (DL = DL//20,5). MCR and n have respectively a weakly positive and even negative 

correlation. 

 
5.2.1.4. SIZE OF THE HAZARD INDEX 

The HI seems to be mostly unaffected by the number of measured substances, even for very large samples 

(see Figure 12 and Figure 13). Considering all samples in the Swedish Pesticides dataset, the HI starts to 

increase above 5 substances but remains relatively constant above roughly 25 substances (Figure 12). There 

are a few outliers above 35 substances, but these only pertain to a few samples. For the Waterbase, samples 

can be larger (up to 80 substances) but the same trend is confirmed, with an initial increase in the HI but a 

constant pattern in the HI at higher sample sizes (Figure 13).  
This is in contrast with Price & Han (2011) who showed a positive relationship between HI and the number of 

detects (and equally between the HI and the number of analytes). 
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Figure 11: Figures from Price & Han (2011): The relationship between HI and n for top: scenario 1 (DL = 0) 

and bottom: scenario 2 (DL = DL//20,5). HI and n have respectively a strong positive and weak positive 

correlation. 

5.2.1.5. EQUAL TOXIC SHARE OF ALL CONTRIBUTING SUBSTANCES 

The MAF as calculated with the KEMI 2021 algorithm does not reach a plateau as observed for the HI and 

MCR method: the MAF increases for larger samples, without levelling off as observed for the other two 

methods (see Figure 12 and Figure 13). The lack of plateau phase for larger samples for the KEMI 2021 MAF 

does not reflect the observation that a small number of substances drive the mixture risk.  
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Figure 12: Mixture methodology against the number of components above the limit of quantification (LOQ) in 

the mixture for the Swedish Pesticides dataset based on four different MAF methodologies: equal toxic share 

of most contributing substances (upper left, MAF is the number of substances explaining 90% of mixture 

effect), HI (upper right), MCR (lower left) and equal toxic share of all contributing substances (lower right).  

Remark: for easier visualisation, 21 and 6 MAF values higher than 10 were omitted from the plot for HI (left) 

and MCR (middle) methods, respectively. 
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Figure 13: Mixture methodology against the number of components above the limit of quantification (LOQ) in 

the mixture for the refined Waterbase dataset, based on four different MAF methodologies: equal toxic share 

of most contributing substances (upper left, MAF represents the number of substances explaining 90% of 

mixture effect), HI (upper right), MCR (lower left) and equal toxic share of all contributing substances (lower 

right). 

Remark: for easier visualisation, 23 MAF values higher than 50 were omitted from the plot for the HI method 

(left). 
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5.3. IMPACT OF SINGLE SUBSTANCES AT RISK 

MAF methods differ in how they account for the mixtures where single substances lead to risk. This can be 
understood from the methodology of each method. 

• The equal toxic share for the most contributing substance method looks at the number of substances 

responsible for the mixture risk, irrespective of the individual risk of the substances. 

• The MCR method evaluates the number of substances significantly contributing to the mixture risk. 

Because this is based on the division between the mixture risk and the highest single substance risk 
(Eq. 2), the impact of single substance risks in the mixture is limited. 

• The size of the hazard index is the sum of the individual hazard quotients of the mixture components. 

Risks of single substances (HQ > 1) will lead to a higher hazard index and thus have a large impact 

on the final MAF. 

• The equal toxic share of all contributing substances method only considers mixtures at risk. Within the 
algorithm, the HQ of individual substances at risk is set to 1 before further calculating the MAF. In the 

calculations, these single substances still have a relatively large impact on the final MAF.  

 

5.4. LEVEL OF PROTECTIVENESS 

The level of protectiveness and/or level of conservatism of MAF methods can be evaluated by comparing the 

MAF values between different levels of protectiveness i.e. the percentage of mixture in the databases that they 

cover. This is ultimately a policy decision, but typically 90th or 95th percentiles are used for worst-case 

scenarios. In the current study, we looked at the difference between 90 and 95% of mixtures.  

The MCR method was least influenced by this choice, differences between both protection levels were less 
than 1 across all databases (Table 4). For the equal toxic share for the most contributing substances method, 

the protection level is accounted for twice and is thus an important factor: in the selection of the % of mixture 

effect explained and what cumulative percentage of the samples to consider. For the equal toxic share method 

for all contributing substances method, the impact was notable (MAF difference up to 3 between 90th and 95th 

percentile). The size of the HI sums the individual hazard quotients and differences between 90th and 95th 

percentile can thus be considerable, depending on the database (see Table 5). 

 

5.5. SUMMARIZING ROBUSTENESS OF DIFFERENT MAF METHODS 

Various methods could be employed to determine the generic MAF. These methods can be based on: 

• The number of (equal toxic share) most contributing substances in a mixture, or 

• The size of the maximum cumulative ratio, or 

• The size of the hazard index (or cumulative risk ratio), or 

• Iterative algorithm based on equal toxic share of all contributing substances in carrying capacity  
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The robustness of all these methods against the following conditions was assessed in previous sections: 

• Choice of reference values 

• Sample size and the unknown and non-detected substances 

• Consideration of mixtures with single substance risks 

• Choice of protection level and level of conservatism 

 

A summary of the results in provided in Table 11. 

 

Table 11: Summary of robustness of different MAF estimation methods on monitoring data. 

 Equal toxic share 
of most 
contributing 
substances 

Maximum 
cumulative ratio 

Size of the 
hazard index (or 
mixture risk 
ratio) 

Equal toxic share of 
all contributing 
substances 

Reference Van Broekhuizen 

et al. (2016) 

Price & Han 

(2011) 

KEMI (2015) KEMI (2021) 

Logic Equal toxic share 

of worst 

substances in 

carrying capacity; 
non-proportional 

to worst 

substances 

Non-equal toxic 

share in carrying 

capacity; 

proportional to all 
substances 

Non-equal toxic 

share in carrying 

capacity, 

proportional to all 
substances 

Equal toxic share of all 

substances in carrying 

capacity; 

non-proportional to 
worst substances 

Choice of 

reference values 

Robust Robust Sensitive Sensitive 

Impact sample 

size and  

unknown and 

non-detected 
substances 

Moderate Robust Probably robust Sensitive 

Consideration of 

mixtures with 

single substance 

risks 

Robust Robust Sensitive Sensitive 

Choice of 

protection level 

Sensitive Robust Sensitive Moderate 
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and level of 
conservatism 

 

It can be concluded that the MAF estimation method  “maximum cumulative ratio” is the most robust 
method to the choice of reference values, sample size, unknown and non-detected substances consideration 

of mixtures with single substance risks and choice of protection level. The “equal toxic share of most 

contributing substances”  is slightly less robust due to the higher sensitivity towards sample size and choice of 

protection level. The “size of the hazard index or mixture risk ratio” and “equal toxic share of all contributing 

substances” are most sensitive to the defined criteria.  

 

 

6. CONCLUSIONS 

This report does not question or assess whether a MAF is needed, or in which cases it is needed (generic 

or specific), or whether MAF is the appropriate measure to account for potential mixture risks or whether 

REACH is the proper regulation to address potential mixture risks. This report assumed that if a generic MAF 

would be put in place, how to best estimate such generic MAF. 

Various methods could be employed to explore a generic MAF. Factors between 2 and more than 50 have 

been reported. All methods have their own rationale with advantages and disadvantages.  The use of spatially 

broad EU monitoring data is generally preferred as they portray representative, real life occurrence of mixtures. 
Environmental models are as accurate as a factor 10 to 100 (ratio modelled versus monitored; Van Gils et al., 

2020) which is large in the context of MAF setting. Use of environmental monitoring also comes with 

uncertainties such as non-detected and unknown chemicals in the environment. A proper MAF derivation 

method should be as robust as possible against these uncertainties. The method “maximum cumulative 
ratio” was found to be the most robust against these uncertainties. The “equal toxic share of most 

contributing substances” was evaluated as the second most robust method based on the defined criteria. 

These two methods each rely on a different logic; the equal toxic share of most contributing substances  

method assumes an equal toxic share of the environmental carrying capacity for most contributing substances 
and will therefore disproportionally assign higher MAF to the most contributing substances whereas the MCR 

assumes unequal toxic share of the environmental carrying capacity and proportionally allocates MAF to all 

substances contributing to the mixture toxicity. As to which method takes preference is largely a policy 
decision. Following questions need to be addressed: 

• Should the burden of mixture toxic pressure be distributed to the most contributing substances (equal 

share of carrying capacity) or to all substances (proportionally, i.e. in which most contributing 
substances take relative more burden)?  

• What protection level is to be achieved, i.e. how many mixtures (sample locations)? In exposure 

assessment, 90% is often used. In hazard assessment, 95% protection is often used. 
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The assessment provided above suggests that the two most robust methods (with different policy logic 
background) result in a reasonable worst-case (ca. 90th percentile) generic MAF factor of 3 (MCR) to 9 (equal 

toxic share method) to protect the majority of the observed mixtures. These factors refer to all chemicals (i.e. 

REACH and non-REACH chemicals like plant protection products and pharmaceuticals, as well as 

historical/legacy substances and sources which are already regulated and for which a MAF will not result in 

additional benefit). These factors are also worst-case because, first, additivity (concentration addition) was 

assumed as reasonable worst-case interaction. Different toxic modes of action would not necessarily lead to 

additivity and would result in lower MAF. Secondly, the additivity was assumed at ecosystem level, adding for 
example effects from fish as most sensitive species for one chemical to effects from invertebrates as most 

sensitive species for another chemical. A refinement would be to assume additivity at trophic level or 

community level (e.g. trophic level concentration addition). A REACH specific MAF taking into account 

independent action between certain groups of chemicals (calculated at trophic level) will be lower. Further 

differentiation following single substance regulation and/or mode of action is therefore recommended for further 

research.  
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